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Introduction and motivation

In supergravity, as in any gauge theory, BRST quantization provides a
convenient and consistent setting for integrating over quantum
fluctuations. However, in the presence of a background/boundary there
Is also a rigid symmetry group of isometries which is a subgroup of the
local gauge group. How do the isometries act on the quantum fields and
is there a charge associated with them?

Question: How can one consistently deal with these two different but yet
closely related symmetries?

This is an essential issue that confronts the application of localization in
supergravity. When one is dealing with different independent symmetries
there is no problem. For instance, for a supersymmetric gauge theory one
can combine the BRST charge with a rigid supersymmetry charge and
define equivariant cohomology. But when considering the full supergravity
then all these invariances are contained in one common irreducible gauge

algebra. Nekrasov, 2003
Pestun, 2012
Pestun et al., 2016



The above observations are important because there are applications in
physics where one should not freeze the space-time metric, so that the
gravitons will still represent dynamical degrees of freedom over which one
should integrate in the functional integral. Until recently it was not entirely
clear how to carry out such a calculation consistently.

One such application concerns the calculation of the entropy of BPS

black holes. For these (charged, extremal) black holes the near-horizon
geometry equals AdSs X S“. Because of the supersymmetry enhancement
at the horizon, the horizon values of the fields and the size of the horizon
area are determined by the charges. The entropy can then be obtained
from the horizon data by making use of the Bekenstein-Hawking area law,
or, when the action contains also higher-derivative couplings, by using the

Wald entropy formula. Ferrara, Kallosh, Strominger, 1996
Cardoso, dW, Mohaupt, 1999, 2000

Obviously, this approach did not take into account the quantum fluctuations
of the supergravity fields in the AdS space. This can be accomplished by
using Sen’s quantum entropy function which is based on the AdS,/CFT;
correspondence. That means that one has to evaluate a path integral over
all fields living in a space-time with a boundary, where one integrates over

the super-gravitational degrees of freedom. Sen, 2008



In recent years there have been several calculations of the quantum
entropy function based on localization, but still without including all

possible quantum fluctuations. Dabholkar, Gomes, Murthy, 2011, 2013

Murthy, Reys, 2013, 2015
Hristov, Lodato, Reys, 2018, 2019

In this talk | will discuss recent progress on this issue and explain how to
apply localization for spaces with a boundary which, at the same time, can
deal with the integration over all fluctuating supergravity modes.

adW, Reys, Murthy, 1806.03690

Meanwhile this framework has already been tested in an actual calculation.
Jeon, Murthy, 1806.04479



What is localization?

Localization is a technique by which, under certain conditions, an
Integral can be exactly written as an integral over a lower-dimensional
subspace, or sometimes as a sum over contributions of fixed points.
This technique was originally developed by mathematicians in the

twentieth century. Duistermaat, Heckman, Berline, Vergne, Atiyah, Bott, 19682 - 1964

The idea of localization can also be applied to the path integrals that appear

In quantum field theory. Usually this is done in the context of supersymmetric
field theories. When (supersymmetric) localization is applicable, the
infinite-dimensional path integral can be expressed in terms of an expansion
about a restricted field configuration that is known as the localization manifold.

Note that this localization manifold has no intrinsic physical significance.

It is actually induced by a special deformation of the action which is chosen
such that, in a convenient limit, the full path integral is determined by the
action taken on the localization manifold while only including the semiclassical
corrections associated with guantum fluctuations about this manifold.



Content

1 - Quantization of the gauge theory (in our case supergravity). This
requires the introduction of BRST cohomology.

2 - Incorporating the boundary data. Here we will use a background
field splitting that is suitable for theories with a soft gauge algebra.

3 - For localization one needs an equivariant cohomology. What is the
connection?

4 - For localization one also needs to introduce a deformation which
In a special limit leads to a suitable localization manifold.



BRST cohomology

We consider a generic gauge theory with transformation

5¢’L — R’La(¢) SO[
where R."(¢)depends on fields and may contain space-time derivatives,
and the parameters £ (:I?) are functions of the space-time coordinates.

These transformations close under commutation,

0(€1) 0(&2) — 0(&2) 0(&1) = 0(&3)

with £3% = fg,“ 515 £5' and structure ‘constants’ fo3"
that may depend on the fields, so that the algebra is ‘soft’. This implies:

Closure: R’ o 0 Riﬁ] = 2 fap” R", and correspondingly the

Jacobi identity: [, 55 Jy° + Rj[a 0[5y =0
T soft algebra



The corresponding BRST transformations
Sorss® = R() Ac®  ObrstC® = 2 fa,* P AT
are nilpotent
5brst2 ¢Z =0 5brst2 c” =0
The path integral requires gauge-fixing. Therefore one includes
1. '
L81 = Op Sirst [ba F(9)*] = Ba F(¢)* — ba R(¢)5 ¢ 0, F ()
where we have assumed the following transformation rules

5brstboz = A Ba 5brstBoz =

The fields B, are Lagrange multipliers that impose the gauge conditions
F(¢)a =0

The fields b, are known as the anti-ghost fields.

The statistics of the ghost and anti-ghosts is opposite to the statistics of
the corresponding gauge fields and transformation parameters.



Background field split

To be able to describe boundary conditions we make use of a background
field split:

¢ =¢'+¢°
The boundary fields ¢°will be fixed at the boundary and they are

continued into the bulk. The precise continuation is not important. The

quantum fields ¢’will be integrated over in the functional integral and
they will vanish at the boundary.

Background transformations

o .

0" = R(¢)'a £ 06" = AR($, ) 0 €°
where AR($,$)'o = R(¢+ 6)'o — R())'4

Quantum transformations

~

St =0 0" = R(p+ ¢)'n



Algebra of background and quantum transformations

5(£1) (&) — (1 > 2)]¢" =0,

0(€)5(&) — 8(€) 0(&)]¢* = 0,
5(£1)6(€2) — (1 > 2)] 9" = f(B)ag’ &% &L R(9)Y,

0(£1)0(€2) — (1 2)] 6" = f(D+ B)ag’ &% &L R(D + 0)°,
[0(€)3(€) — 3(£) 0(8)]¢* = F(P+ D)ap’ €2 €° R(H + ¢),

~

5(6)3(62) — (140 2)]d" = f(@)ad & & AR(, D),
+[£(9) = F(B)] &> &L R(d+ ),
YT soft algebra

(0,0]=0+6 [§,6]=8 [0,0]=0



BRST transformations and the action

Srst @' = R(9)'

Sprst @ = R(¢ + qb) A(c® + &%) — R(B)%, A é°

Obrst C | = %f(gb)a TEAN P

best €7 =3 f(D)ag’ A + F(§)ag’ ¢ON + L [f(9) — F(9)], ) ¢7 NG
=3 F(@)a’ e+ A (e +0) =L [(B)ag’ ¢ A ]

Oprst Do = A By, Obrst By = 0 T soft algebra

Strst[9”, ¢, ba, Ba; 0, &%) = / A"z |L9(§ + 6) + Ba F($,)°
— (=) T by RS+ 6 (c+ &) 7 037 (D, 6)°
— (=)t by R(9)5 67 (0= 0);F (6, 6)° ]

5brst Sbrst = ( 5brst2 =0



The object of study will be the functional integral,

:/ D%ZDCO{Dba DBa eXp Sbrst[giycajbOHBOé;¢?i7éa]:|

It depends only the background fields and not on the background ghosts
and satisfies (note that the integration measure is invariant).

o

5brstZ[¢?] — aZo[¢] R(Qz)za c

The functional integral is independ of the gauge condition. This follows from
the Ward identities associated with BRST invariance.

The gauge independence will remain intact when one includes a
BRST-exact deformation of the form oy« V(gb cb)

Another implication of the Ward identities is that the Lagrange multiplier
fields B, must have a vanishing expectation value.

Reminder: we have everywhere assumed that the BRST transformations close off shell!



Towards equivariant cohomology

The background fields ¢ * will be fixed by physical considerations and will
be invariant under an isometry group that is a subgroup of the full group of
background transformations. In the continuation of the backgrond fields
into the bulk, the isometry group can remain manifest. This implies that

the BRST variations of the background should vanish, i.e.

5brst¢?i — R(é)za e = 0

Consequently all the background ghosts should vanish with the exception

of those that parametrize the isometry group, Remarkably enough the
transformation of the background ghosts remains unchanged and does

not require additional constraints. Note that
(@] 1 9 (] (@]
ObrstC — D) f(¢)5’7a CBA ¢’
does not vanish, but is now restricted to the isometry sub-algebra

With these restrictions the BRST transformations are still nilpotent and the
functional integral is BRST invariant!

Subsequently we consider a deformation where all background fields and
ghosts remain invariant. This leads to equivariant cohomology.



Deform the BRST algebra

Jeq @' =0 Jeg 67 =0 < truncation

beq @' = R(§ + §)'a A (c™ + &%)

Seq ¢ =3 f(0)s (c+c)5A(c+c> L f(@)py 7 AT
Seq Ba = L f(6)sL &€ f(P)ag! by - changed

Jeq ba = A B,

Due to the deformation the transformations are no longer nilpotent!
Instead we obtain an equivariant map

boa® = 0 [deq., 0]

=0
' “ takes its values in the iIsometry algebra and is quadratic in the
background ghosts.

The background ghosts now play an ancillary role as the parameters of
the isometry transformations, which act both on the background and on
the quantum fields!



0 £ acts only on the quantum fields:

~ . (@)

5e ' = R(¢+ ) "
5ec® = f(d+ )gy (c+ )P &
6¢bo = €7 f(9)ag” by
55 Lo = 505 f(¢)a ) B

This is an important feature. Note that these variations vanish at the
boundary (where the quantum fields themselves are required to vanish).

The same is true for the equivariant variations.

Let us now return to the functional integral and consider the replacement
of the BRST variations by equivariant variations. Hence

Seq[(gi,ca,ba,Ba;(Ei,éo‘] = /dnx {ﬁdass(qg+ (Ab/) + OA Oeq [ba F(¢7 5)%}

which turns out to be identical to the BRST expression for the action!
To see whether the corresponding functional integral is nhow also
invariant under the equivariant variations is a bit more involved.



One easily derives
bua S = 3¢ [ 4" [ba F(6.6)"

where we used that the boundary is invariant under 5eq. The right-hand
side will in principle contribute when evaluating the equivariant variation
on the functional integral.

However, this cancellation can still be realized by assuming that the
background isometry 0 £ is compact. This requires to make a special
selection for the background ghosts.

Compactness of the manifold on which the theory is defined is also a
requirement.

On the basis of this assumption it follows that the functional integral
must be independent of the gauge condition. Likewise one can
introduce 5eq -exact deformations into the action without affecting the
the invariance of the functional integral and the independence of the
gauge condition.

To evaluate the functional integral exactly one can in principle apply
localization by making use of the formalism described so far.



Localization of the functional integral

The first step is to introduce a deformation into the action Se, equal to

Adeq V
which satisfies (5 2Y) — (0. Furthermore
d
d)\Z /ng Dc® Dby, DBy, deq |V €xp[Seq + Adeq V|

Assuming that Oeq can be represented as a differential operator in the
field configuration space, it follows that (super-Stokes theorem),

—Z [¢?, )\] =0 Schwarz, Zaboronsky, 1997

An immediate consequence is that we can take the limit of infinite )\,
so the integral localizes on the critical points of the deformation Oeq V.

More qualitatively: when this is done correctly the result is given by the
value of the Lagrangian on the localization manifold modified by
semiclassical corrections.



A convenient (standard) choice for the deformation is
V= /dnaj \/é(ﬂf) L % 5eq W
7

where wzdenote all the fermonic quantum fields that do not overlap
with the fermonic gauge-fixing terms.

Fr’_emember that we required 5eq2V — (0, which is indeed satisfied in
view of 5512 _ 55/(1"3:‘ Z \/;ai 5eq¢i —0
7
In the limit A — o0 the critical points of the deformation
AdeqV = A / "z /G Y Gealhs deqt” = U, oy’

must satisfy 0eqt)" = 0.



Under these assumptions the localization manifold is defined by

M = {5eq¢ = 0 for all fermions 9" Eqﬁ /ng¢ —O} = {t}

where the parameters t, are appropriately chosen coordinates on the
solution set M.

The localization manifold involves, in principle, the bosonic quantum fields of
the original supergravity and the bosonic ghosts associated with the
fermonic gauge transformations. The bosonic multiplier fields and the anti-
ghosts will eventually mix, but their role is somewhat different.

The relevant action takes the following form:

_~

S(A) = 59%[6 + ] + / 02 [BaF (6, )% + (=) ba 6 F(6, 3)°
+ A / d"z Z \/5 [5eq@i 6eq¢i — Ez 6eq2wi]

There is a balanced set of quantum fields with equal nhumber of fermions and bosons
(provided one takes account of the gauge conditions).



To illustrate what happen in the limit A — oo it is convenient to introduce
the rescalings

~

X =¢"'(t)\M+%¢“ ¢ =c(t)] T ﬁc
b, = Vb,  BY=+)\B"

The first contribution is the classical action evaluated on the localization
manifold. Note that the measure of the functional integral is insensitive
to these rescalings owing to the balance between fermionic and

bosonic fields.

The second contribution originates from the integral over the
fluctuations about the localization manifold.

(e}

Z[¢] = /M u(t) dtq exp [S?°[¢, é5ta] | Z1it00p[: ¢t

measure associated with the embedding of
the localisations manifold



Then the semiclassical contribution to the path integral equals

000l / D($'")D(c¢*") D(ba') D(B.)

X exp {56(1 Y+ b/ F(¢ita, d')° H

where the terms quaderatic in the quantum fields decompose according to

bV = [ @25 Y [%T% Seqtl" — Uy Beg?]

quad.

!

quadratic in quadratic in
bosonic fermionic
fluctuations fluctuations

This leads to a Gaussian integral and thus to a superdeterminant that

can in principle be calculated (for instance, by fix-point formulae).
Because the localization manifold is bosonic, this leads to a ratio of two
determinants related to the bosonic and the fermonic fluctuations,

respectively.

The dependence on the metric \/g has cancelled.



Conclusions

We have presented a general frameworkf for applying supersymmetric
localization in supergravity.

One condition that has to be satisfied is that the supersymmetry algebra
must close off-shell, i.e. without the need for imposing the equations of
motion. This ensures a nilpotent BRST symmetry and therefore a
consistent equivariant cohomology.

There may be ways of circumventing this requirement by including
multi-ghost interactions, but it may make matters considerably more

complicated

The only other conditions refer to localization itself. The theory in
question must in principle be amenable to localization.






